
 ____ ____________________________
 Basic / | / // \ \
 / | / // /\ \ _________\
 / |/ // / \ \ \
 / /| /| //__/______\ \ Cracking

 / / | / | //____________\ __________
 / / | / | // / \ \ \
 /____/ | / |//__/ ________________\

 Part III: Whimsy 1.1.1, a Hermes External
 by The Observer, released 12/7/95

Welcome back to Basic MacCracking! A bit after I finished part
II, oleBuzzard mentioned that no one had been able to crack some
Hermes externals, and that people would probably be interested if
I did. The first one of these I've gotten through through was
Whimsy 1.1.1.

What is it?
Whimsy pops up random messages at logon, logoff, and welcome
times during a Hermes session. However, until you cough up the
$10 registration fee, it will sometimes slip in a notice that
your sysop hasn't registered this copy of Whimsy, and would you
please email him and suggest he do so.

Stupid program.
Yeah, that's what I thought too. Let's take a peek at the code
with Resorcerer.

Uh-oh. This is a Hermes external, and all it has is a big XHRM
resource. If we can't get beyond a hex representation of this
thing's code, we're in trouble. So let's copy the entire XHRM
into a CODE resource, which will let us use Resorcerer's code
editing tools on it.

The pasting works OK, except for one thing. Who knows whether
this is *actually* working? You can take any random data, paste
it into a CODE resource, and Resorcerer will show you its
assembly equivalent. How do we know this is good CODE? We just
don't. [OK, OK--in the case of Whimsy, we do. Whimsy's subprogram
names are present in its assembly code. When I first started
looking at Hermes externals though, the one I looked at didn't
have the names, so it wasn't obvious.]

If Whimsy was not the first Hermes external we had looked at,

we'd now need to see how a Hermes external is born. Is it with
some Hermes interpreter and scripting language? Or a normal
language with special compiler? What's the deal? A logical place
to find such information was the Hermes tech support BBS,
Olympus. Its number is 206-643-2874. A call here proved very
helpful--I found several files that told me all I need to know,
and would even let me write my own externals if I wanted to.

It turns out you can use Pascal, C, whatever the hell you want to
make a Hermes external. Then, according to a project file which
accompanied some source I'd downloaded, I saw it was compiled
into a resource of type XHRM. I compiled the sample code and
saved the result. Then I changed the destination resource type to
CODE. The same data was produced. So it turns out all the scary
XHRM is, is a renamed CODE resource. Now that that's settled, we
can actually get down to business.

Oooh, CODE!!
So now we have a happy CODE resource. We look at the nicely-
preserved subprogram names. We notice one named
RegRoutineAnnoying. The nag note is certainly annoying. What a
nice place to start.

Sure enough, RegRoutineAnnoying has a call to _TickCount, and
then a call to _Random:
movea.l $0008(a6),a3
clr.l -(sp)
_TickCount ; TB trap
move.l (sp)+,$38A8(a4)
clr.w -(sp)
_Random ; TB trap
move.w (sp)+,d7

Random is a very good way to make things happen randomly, and
TickCount provides a nice seed for generating pseudorandom
numbers. Reasonable pair to be seeing together. So now we know
where it's deciding to display or not display the nag message,
right?

Not quite. Let's look at the full line with _Random in
Resorcerer:
_Random ; TB trap
 | A861 | ®a

What this is is a call to Random. The two vertical lines separate
the sections of Resorcerer's screen into code, hex, and data.

First is code--the decoded assembly or toolbox calls. Next comes
the hex trap number, and finally its ASCII equivalent. We see
A861 is _Random's trap number. We search the code for this, and
fine one instance besides the one above, sitting in
RegRoutineCool. Which one is it that is responsible for
displaying the annoying message? (One could make a fair guess,
but let's be scientific about this.) Macsbug offers an easy way
to break at toolbox traps. We open Hermes, break into Macsbug
manually, and enter:
atb a861
Macsbug says back:
A-Trap Break at A861 (_Random) every time

As you might have guessed, we will now break into Macsbug each
time _Random (or, to be specific, the trap A861) is called. Now
let's log in and see what happens.

Boom! Macsbug breaks with the message:
A-Trap break at 00D7069C RegRoutineAnnoying+00016: A861 (_Random)

So here we are sitting in the RegRoutineAnnoying subprogram,
offset 16. To check if perhaps RegRoutineCool is called as well,
we enter "g" so Macsbug will let the Mac go on with its business.
No more breaks. So RegRoutineAnnoying is what we want to kill.

To find the place(s) RegRoutineAnnoying is called, is somewhat
annoying. What I do is use the oddly placed "Print > To Text
File..." command to save the code to a text file. Then I open
this in Word, and look for the string "annoying." The expectation
is to find a jsr pointing to it. As it happens, though, it's only
referred to in one place, CheckCode offset 01F0:
lea RegRoutineAnnoying,a1

Who's Calling?
Resorcerer *says* that it's called there. It even has a branch to
RegRoutineAnnoying. Looks pretty convincing. But LEA isn't a
branch, or even a jump--it stands for Load Effective Address, and
all it's doing here is placing the address of the
RegRoutineAnnoying subprogram into register a1. Despite
Resorcerer's say-so, CheckCode 01F0 is NOT calling
RegRoutineAnnoying. (Take this as further evidence that computers
are stupid, and a reminder not to trust them unquestioningly.) So
what this line is doing is storing the routine's address, to call
later. But where?

To find out, we go back into Macsbug, and break once more at the

_Random trap. Once we break, we follow the procedure until rts,
which sends us back from where we were called. (This is wisdom
gained first-hand from part I.) We emerge from RegRoutineAnnoying
into ShowScreen offset AE. This is the move.l in the code below:
movea.l (a0),a0
jsr (a0)
move.l a3,(sp)
move.w #$0002,-(sp)

indicating the jsr(a0) just before it is what called
RegRoutineAnnoying. Therefore, we were correct that lea is just
loading RegRoutineAnnoying's address, to be called later.

So this is at least one spot where RegRoutineAnnoying is called.
Chances are it's the only one, but since it's using the LEA
system there could be more. We could test for this by breaking at
RegRoutineAnnoying (type "br ", hit cmd-D, choose
RegRoutineAnnoying, hit return), but we still might not find all
of them. On this assumption (that we can't get all the places
it's called), the ideal solution will be to modify the
RegRoutineAnnoying subprogram itself.

Innie or Outie?
Notice I keep saying subprogram. This is a neutral term for both
function (which returns a value) and procedure (which is supposed
to not return anything). RegRoutineAnnoying has to be one of
these, which brings up two possibilities--either it's self-
contained, and so NOP'ing it will be an effective crack. OR, it
returns its decision as to whether or not to display the nag
note, to be acted on elsewhere. My guess, since nothing is moved
off the stack pointer after it's called, is that it's a self-
contained procedure. But I'm not confident enough in my assembly
yet to be making a statement like that. [As it turns out later, I
was part wrong on this anyway.] So an easy test to find out what
it really is, I decided, would be to NOP pretty much the whole
RegRoutineAnnoying subprogram:
link a6,#$0000
nop
nop
...
nop
unlk a6
rts
dc.b $92,'RegRoutineAnnoying'
dc.w #$0000

So now the entire subprogram is just link and unlink. We now go
into Hermes, set a break on A891 just for good measure, and log
in.

Whoa! It breaks in RegRoutineAnnoying, and all the code is still
there. What the hell? This is something that took me a little bit
to realize, and I still keep on forgetting to do it sometimes.
Hermes doesn't give a shit what's in your CODE resource. What it
looks at is the XHRM. So quit Hermes, take your modified CODE and
paste it back in the XHRM. Now re-open Hermes and try again.

It looked to me like this worked. It looked so much like it
worked, that I even sent it to oleBuzzard and asked him to try it
out. The next day he mailed me back, though--something was wrong.

Experimental Error!
While testing the crack, I had been using only one test file. If
the file came up, good; if Whimsy's nag came up, bad. Only two
possibilities. oleBuzzard tried it with more than one file
though, and quickly realized that it kept picking the same file.
When I heard about this I was pretty annoyed with myself for not
realizing that no call to _Random meant no randomness. I had been
wrong that it was self-contained. No, RegRoutineAnnoying got data
out of itself somehow, though without the stack pointer. Global
variables are my best guess.

So it was back to work. What to do, what to do? My first idea was
to check out all the branches in RegRoutineAnnoying and
ShowScreen, to see if there was any consistent difference between
when it showed a file message or the nag. Annoyingly, there
wasn't. To examine this for yourself, break at _Random and step
through, recording each branch through the end of ShowScreen.
Deciding to play around nonetheless, I changed one and got the
somewhat gratifying result of either seeing a file displayed, or
nothing. No more nags, but still not perfect.

My next idea was to try and get Whimsy to let me register it with
an otherwise illegal code. An little under an hour or so of
dicking around got me the chance to enter a code, but things were
so fucked up to get there that I couldn't make it work any
further.

Well duh.
Finally, it hit me--RegRoutineAnnoying, and RegRoutineCool. Both
have _Random's, but one is defined as annoying and one as cool.

So we go back to CheckCode 01F0:
lea RegRoutineAnnoying,a1 | 43FA F156 | C˙ÒV

This says RegRoutineAnnoying because Resorcerer is interpreting
the actual instructions given the location of RegRoutineAnnoying
in the code. What it *really* looks like is:
lea *-$0EA8,a1

(To change between these, hit cmd-2, for "Routine-Relative
Offsets" in the Code menu.)

So we're moving backwards from where we are (absolute offset
281E) to absolute offset 1976. Doing the math, we find that 281E-
0EA8 does in fact equal 1976. Cool, nothing weird there. However,
the hex code for the line is "43FA F156". -0EA8, as should be
apparent, does not appear here. So I had to fiddle a bit to see
what was going on.

If we set the second word of the hex (F156) to FFFF, it points
backwards just one. Whoops. So apparently the amount it branches
up is the difference between FFFF and what you give it.
(Branching down, you just give the change in offset.)
RegRoutineCool is at absolute offset 1A2E. We're at 281E and want
to go to 1A2E. 281E-1A2E finds the difference between the two
offsets: 0DF0. Subtract this from FFFF (65536), and get F20E. We
put this in the second word of the line's hex code, save, and
close the code window. Sure enough, when we open it again, the
line reads:
lea RegRoutineCool,a1

So now, instead of going to RegRoutineAnnoying, ShowScreen will
call RegRoutineCool. Incidentally, in case you're not sick of hex
by now, this is a system called two's complement, which is used
to have a long word (4 bytes) go from -32767 to 32767, rather
than zero to 65536. The system goes from 0000 to 7FFF for
positive numbers. 8000 then equals -32767, 8001=-32766, to FFFF=-
1.

Back to the story. Changing worked in all of my trials, and
oleBuzzard is testing it as I write this. I'm pretty confident
this one will work.

[Next day...]
Sure enough, it's good! Another happy crack. My thanks to
oleBuzzard for acting as a "beta tester" with his board to make
sure this was truly cracked. It seemed like it was, but with
random things you can never be too sure. No sense in sending out

something that's going to break on people.

Phew!
This one was somewhat tough, but very interesting. I got the
first (flawed) crack done in a night, but finding the stuff about
the way LEA was working and everything took me another day or
two. Then another two days to figure out the RegRoutineCool
solution. There are some other Hermes externals I'm working on
which are just hellish, but I picked up some things here that
will help me with them. I don't know if I'm up to cracking them
yet, but I'll sure be trying. I'd say which ones, but I hate
vaporware. You'll know if I crack them, and if I don't, no one's
left hanging.

So long, farewell, auf wiedersehen, goodbye...
I'd like to acknowledge (as I realize I haven't before) The
Shepherd's excellent work on his "Assembly for Cracking" file,
which was what sparked this series. If you're reading this and
haven't already, look for that file as well. I use it whenever I
have an assembly question (this is fairly frequent), and it's
very rarely left me unanswered.

If you've done some Mac programming in C or Pascal, you might
also want to think about picking up a copy of "Debugging
Macintosh Software with Macsbug," by Konstantin Othmer and Jim
Straus. It's not a Macsbug reference, but instead talks about how
various Mac toolbox things and some general code is translated
into assembly, and how to watch these things in Macsbug.
Published in '91, so it's a little dated, but it's still great
for seeing what some things in assembly mean. Apple publishes a
straight Macsbug reference, but the store I went to didn't have
it. I don't know how it could be incredibly better than this one,
but if anyone has any comments on it, I'd like to hear them.

Also, I hear that this series is actually helpful and interesting
to people. I'm thrilled to hear this. When I started, blasting
out whole procedures in Resorcerer, the whole thing seemed like a
novelty. Cool, but not actually so useful. It wasn't until
oleBuzzard suggested I write a file about it that it even hit me
other people might be interested. But interested people were, and
it's even spurred at least one other person to find and publish
his own crack for Dirt Bike 3.0. (Seeing this was a real head
rush for me--way to go, CyboBoy.)

Any and all comments on this or other MacCracking files can go to

an407599@anon.penet.fi, or Observer on Kn0wledge Phreak (719-578-
8288) or (I love my life) The Keep.

Coming up in MacCracking IV: ????? If I can finish the Hermes
externals I mention above, I'll do that. I might also revisit Net
Watchman with my newfound Macsbug skills. But I'm always on the
lookout for new things to work on, so if you have something you
want cracked, or want a fresh viewpoint on something you're
working on yourself, please feel free to send it to me. No
promises of course, but I'm happy to take a crack (nyuk nyuk) at
anything you want to throw my way.

I'll also do the same speech I did for Relax--distributing
cracked shareware is just mean to its authors, real people
without whom we'd have a lot less cool software. Post this file
anywhere you think people will be interested, but please don't
distribute a cracked Whimsy or the cracker to the masses. Thanks.

And that's it. Hope you had an OK time following this, it turned
out to be much longer than the previous files. Until IV, so long!

A parting note from the "Two for the price of one" department...
I sometimes use a program called GraphicConverter (v1.7.7 /1)
which uses a nag system identical to Relax: it pops up a dialog
box you have to wait to dismiss. The crack for this took me well
under an hour, and it's so similar to what I described in file 1
I'm not even going to dignify it with its own file. But if you
want a little basic practice (or an upper after too many
unsuccessful hours in Macsbug), it's a good one to check out.

